
1. Instruction set

The 5'th September 1992 and I begin by starting to think about the instruction set. I decide to have 16 
registers. This way the register number will fit in 4 bits. The computer will be a 40-bit machine. 
Hopefully I will be able to fit 2 instructions in each 40-bit "word", each one taking only 20 bits. This 
way I can execute 2 instructions per instruction fetch. On this page the right column indicates the 
number of bits the instruction operands require. 

The instruction groups are: 

o NOP (No operation)
o Arithmetic (Multiply, Add, Subtract), integer and floating point
o Logical
o Shifts and rotates
o Loads
o Individual bit testing, setting and resetting
o Jumps, Calls, Branch (relative jump) and returns
o I/O instructions and control 



2. Instruction set (continued)

The Jump, Call, Branch and Return instructions. I note that the Jump and Call instructions will not fit 
inside the 20 bits size I hope to use for each instruction. The destination address must be 20 bits or 
more, if the memory is to be a reasonable size. 



3. Floating Point format and Execution Units

Next I decided the format to use for floating point (none of this IEEE compliant nonsense). I use 1 
sign bit, 8 exponent bits and a 31-bit fractional part. This I consider should be a reasonable accuracy 
for most applications, and of course it fits the 40-bit word size nicely. 

I regroup the instructions and decide on what execution units I will need to build. Each unit will handle 
a particular type of instructions. The list of execution units doesn't seem complete. 



4. Detailed Instruction Codes

The next day I consider in detail the format the instructions will take. The first 3 bits will always code 
the unit required. The following bits specify the opcode and operands (register numbers for source 
and destination data, etc). The load and store to memory instructions will require a whole 40 bits. 



5. Detailed Instruction Codes: Add/Sub/Logic, Shift

The opcode for the add/sub/logic instructions fits nicely into 5 bits, so there are 12 left for the two 
source registers and the destination register. Neat (now you may begin to realise why I chose 40 bits 
for my word size). 

The shift instructions also have a source and destination register. I have marked 5 bits to specify the 
amount of shift but I think I would really need 6 (for 0-39 bits of shift). 



6. Detailed Instruction Codes: Bit manimpulation and jumps

Bit manipulations also fit exactly and neatly into 20 bits. 3 bits specify the action required, 6 bits the 
number of the bit in the word (0..39), and 8 bits the source and destination registers. 

The jumps and calls require the full 40 bits for specification of the target address. Branches fit in 20 
bits, they have 12 bits available to specify the displacement from the current location. The Jump, 
Branch, Call and return instructions all have conditional variants, which test the state of the Carry, 
Zero and Sign flags. 



7. Block Diagram and Register descriptions

A small block diagram showing the interconnection if the units in the CPU. The CPU incldes its own 
memory and memory control, and all input/output is intended to be via a host Z80 processor. 

There are 9 general purpose 40-bit registers, register 0 is always zero, and the remaining 6 registers 
are for the stack pointer, program counter, loop counter, In and Out registers, and index register. 



8. Scoreboarding and Bus Arbitration

Now I give some consideration to the scheduling and organisation of the units. The Scoreboard 
ensures that registers and execution units are locked while they are awaiting a result write or in use. 

On this page I also make a few calculations relating to the mandelbrot set, concerning the number of 
instructions that must be executed in each iteration of the mandelbrot calculation. Yes, drawing 
mandelbrot sets is considered to be the first application for the computer... 



9. Instruction set codes again

A review of the instruction set, in which things change slightly. 



10. Instruction set codes again (Control, Loa/Store, Multiply, Add/Sub/
Logic)



11. Instruction set codes again (shifts, bit manipulation, jumps)



12. More on Scoreboarding

Some more thoughts on the practical implementation of the scoreboarding. Also, consideration of an 
alternative way to code the instructions. 



13. Block Diagram of CPU

A nice block diagram of the CPU, as it stands so far. 



14. DRAM refreshing

The 9th September 1992 and I decide to think about refreshing of dynamic memories (DRAM), and 
begin by calculating how often I will need to do it, and how long it will take. 



15. DRAM refresh circuit

A real circuit diagram of how I will take care of the refreshing. At the bottom of page 14 is a circuit to 
generate one pulse every 4 mS, which is how often I will be doing a refresh. This is generated from a 
62.5 kHz signal, which would in fact come from the host Z80 computer's video controller circuit. The 
refresh controller also requires a 100 MHz clock. 

During the refresh, the CPU gets suspended, and the hosting Z80 also has to WAIT. The refresh 
operation doesn't start until the rest of the CPU acknowledges the refresh request. 



16. Z80 Memory Controller

This CPU design only has I/O via the host Z80 computer, and so the contents of the memory are 
programmed by the Z80. The circuit on this page allows the host Z80 to read and write the memory. 
At the bottom write I draw a nice diagram indicating the external connections of this unit. 



17. DRAM page mode

I devote some attention to the issue of dynamic RAM page mode access. Page mode is much 
quicker than a fully random access. In page mode, the row address of the memory location is locked, 
and columns read from that same row. 



I feel that if I use page mode wherever possible, my CPU will run twice as fast as it would otherwise, 
because I can get my instructions twice as quickly. 

18. Instruction fetch and pipeline



More details of the precise memory timing I will need to generate in order to arrange for page mode. 
Here are some designs for circuits to arrange this timing, and ideas for the instruction buffer 
(pipeline). 

19. DRAM timing for Page-mode access



More on the timing of the DRAM page-mode access. Note that the indicated "100 MHz" is for thought 
purposes only: the CPU is asynchronous so in reality no such clock exists. In practice I will ensure 
that propagation delays in the instruction fetch circuit will be long enough so that the memory will 
always have the required amount of time to access and return its data. 

[Or is this true? Did I in fact intend to use a 100 MHz clock for the memory timing, in order to ensure 
precise timing? In this case I would have considered the resultant 10 nS period very short so that 
effectively the clock was only be used to ensure precise timing, not synchronise any other part of the 
processor]. 

20. Instruction buffer



Early sketches concerning the operation of the instruction buffer and memory timing. 

21. Propagation Delays of TTL families



13th September 1992 and I carry out some library research into the propagation delays of various 
TTL types. 

22. Instruction Pipeline and Load/Store Unit



Here is a detailed diagram of the instruction pipeline and load/store units, which are closely 
connected. 

23. Instruction Pipeline (continued)



More of the instruction fetch and memory timing control circuits. The second circuit here relates to the 
memoryu timing, but has evolved to a more carefully thought-out version. 

24. Shift unit thoughts



Now I spend some mental energy considering the controversial topic of shifting. I want a fast barrel 
shifter, that will be able to shift by any number of bits. This must be done in stages, but using what 
TTL chips? To try to work out the best configuration, I consider designs including cascaded stages 
consisting of a number of the following TTL chips: 

o 74LS151: Single 8-1 line multiplexer
o 74LS153: Dual 4-1 line multiplexer
o 74LS157: Quad 2-1 line multiplexer

25. Instruction Fetch Pipeline evolution



15th September 1992. After that brief interlude with the barrel shifter, it's back to work on the 
instruction fetch pipeline. These circuits show the evolution of the circuit, as I iron out the problems 
one by one... 

26. Instruction Queue Unit



Finally a more complete version of the instruction queue unit, which I believe might work. 

27. Memory Controller



The final version of the memory control circuit. This turns the 20-bit address bus into the multiplexed 
Row and Column form required for the DRAM's, and generates the RAS and CAS signals. It is the 
only part of the CPU having a clock, the 100 MHz clock is used to generate the precise timing 
required by the DRAM. The rest of the CPU from then on is entirely asynchronous. 



28. Address unit; Memory arbitration

The address unit generates the memory address for the memory controller unit to use to access the 
DRAM. This address can come from the program counter, the second instruction field of the Jump 
and Call instructions, or by adding the displacement address of a branch instruction to the current 
location. 

Later I start to think about bus arbitration. This circuit will decide when the CPU can control its own 
memory, and when it should yield control to the host Z80 so that the host can read/write the memory. 



29. Evolution of the Memory Arbitration Circuit

A few more attempts at designing a working circuit for the memory arbitration. 



30. Final Circuit for Memory Arbitration

18'th September 1992 rolls around and I decide that my memory arbitration circuit design is 
complete. It controls the Z80 BUSRQ and WAIT signals and arranges for a clean handover of control 
when the Z80 requests it. 



31. Register File Definition

A reminder of the register naming and useage. Each register also has its own scoreboard bit (half a 
dual D-type 74LS74 flip flop), whose state is "0" if the register is available or "1" if it is busy. 



32. Instruction Decoding and Scheduling

The instruction decode is conceptually simple. The first 3 bits of every instruction specify the unit to 
be used for the instruction. The instruction is "issued" when the unit scoreboard indicates the required 
execution unit is available, and the scoreboard also indicates each of the source and destination 
registers is available. 



33. Instruction Scheduler / First ALU thoughts

Final diagram of the scheduler. Given an "Instruction Valid" signal from the instruction queue, it 
checks register and unit availability. If everything is Ok it enables the correct source register outputs 
and generates signals for the execution units to start processing. The scoreboard bits then get set 
(unit and result register). 

Also shown here are my first thoughts on the ALU design. 



34. Sketches for the BitMan and Load/Store Units

Some preliminary consideration of the Bit Management (test/set/reset) unit. This one can reset any 
specified bit to "0", set it to "1" or test its state. 

The load/store unit is responsible for generating the required memory address. Depending on the 
state of instruction bits 10, 11 and 12, this address is one of 

o 0: an absolute address specified in the 2nd instruction field (40-bit instruction)
o 1: Stack Pointer: The address specified by the stack pointer is used
o 2: Index Register + displacement specified in the instruction

When the stack pointer is used, it is subsequently incremented or decremented automatically by this 
unit, corresponding to a stack "POP" or "PUSH". 



35. Load/Store Unit

Final diagram of the Load/Store Unit. Note the nice block representation at the bottom of the page 
showing all input and output signals connected to this unit. 



36. Bit Management Unit; ALU

The final version of the bit management unit, responsible for reset to "0", set to "1", or testing of any 
bit. 

In the lower part of the page, a diagram of the ALU. This is rather simple, mainly because it uses the 
74LS181 4-bit ALU (8 of them). 



37. Result Arbitration

One of the most important parts of the CPU design! All the units operate asynchronously, and can be 
operating in parallel. Yet they all ultimately want to write the results of their computation to the 
register file using the internal bus. The result arbitration circuit helps to decide who can use the bus at 
what time. 

There are 5 units which may need to write back results. In addition the instruction issue unit will 
require the bus to load source data from the register file to the units. I therefore arrange a stack of 5 
flip flops. There is a "result phase" during which the instruction issue unit allows results to be written. 
In this phase, each of the 5 possible units are checked and in turn allowed to write their results if they 
need to. 



38. Register File and Scoreboard

This page shows the construction of the register file and scoreboard. Register 0 is always zero by 
definition, so it is NEVER busy. 



39. IOU, the Input/Output Unit

This is a set of 74LS374 octal D-type latches, 40-bits wide, one bank for the input and on e for the 
output. Using these the host Z80 can send data to and from the CPU. 

When the CPU executes an IN instruction, a Z80 interrupt gets generated. The IOU is then marked 
as busy on the unit scoreboard until the Z80 has loaded all 5 8-bit registers, so a complete 40-bit 
CPU word is ready. Only then does the IOU send a "finish" signal to the Result Arbitration circuit. 

When the CPU executes an OUT instruction, a Z80 interrupt is also generated. The IOU busy 
scoreboard bit remains set until the Z80 has read all the 5 8-bit chunks of the 40-bit word. 



40. Barrel Shifter sketch and FPU addition notes

Here is a design for a barrel shifter using two states: first a set of 74LS153 dual 4-1 multiplexers, 
followed by a set of 74LS151 single 8-1 multiplexers. This operates on 32 bits and can shift by any 
number of bits in just these two stages of logic. Only 32 bits are considered, cause this barrel shifter 
is meant to be used in the floating point unit to normalise the fractional part. 

Later I start to work out what is involved in floating point addition. A few worked examples are 
required... 



41. On the subject of Floating Point Addition

More deliberations and worked examples as I attempt to understand how to add two floating point 
numbers together. 



42. Align Block

This is a development of the shifter sketched previously. Alignment of one of the operands in a 
floating point addition operation is required prior to the actual addition. The smallest operand is 
shifted right by the difference in the exponent fields. What I are really doing here is lining up the 
decimal points so I can later add the two numbers. 

The align block can shift the 32-bit fractional part of a floating point number (well actually 31 bits), by 
any number of bits in the range 0..31. It does this in only two stages of logic. To accomplish this feat 
requires a mere 28 74LS151 chips, 10 74LS153 and 4 74LS157... 



43. Normalise Block

Very similar to the Align Block, but in reverse. The normalise block is used after a floating point 
operation to left-shift the result, incrementing the exponent field accordingly, so that the most 
significant bit of the floating point fractional field is a "1". 



44. On the counting of leading zeros

Before I can normalise, I have to count the number of leading zeros in the result's fractional part, so 
that I can tell the normalise block how many bits to shift left by. Here I have a few thoughts about this 
task. 



45. Leading Zero Count

The final diagram for the leading zero counter. Note the large number of diodes, which replace TTL 
OR-gates. I always thought if you needed a large number of inputs to an OR-gate, why not use a set 
of diodes? 



46. Floating Point Addition Sketches

It's now 25'th September 1992 and I need to remind myself of my newfound understanding of how to 
add floating point numbers, and how I planned to implement this in TTL. 



47. Add/Subtract Floating Point: First design

Now I add the complication of being able to subtract as well. To do this I use a bank of exclusive OR 
gates (XOR) before and after my adder. This first sketch design needs considerable further work 
before it can be said to be anywhere near complete. 



48. Library Research

27'th September 1992 and I found myself in a wonderful library. I am not Swedish (despite by name) 
but on this date I had occasion to be present at the KTH technical university library in Stockholm. 
Here I found various books about computer architecture and the floating point implementations of the 
IBM 360/91. On this page I jotted down some useful information. 



49. More Library Research

On the subject of floating point viision and multiplication. Oh no! I have only recently understood how 
to add floating point numbers let alone multiply or divide them. 



50. A 4-bit Synchronous counter and Floating Point Multiplication

Here I note down the circuit for a 4-bit synchronous counter. I also found this in the library and 
thought it might come in useful. I did mention sometime earlier in these CPU notes that I needed a 
fast synchronous counter, well here it is. 

I also decide to try to understand floating point multiplication. Once again, a few worked examples 
are the best way... 



51. First sketches for a floating point multiplier

Some first preliminary ideas for my floating point multiplication implementation. I also want this 
multiplier to be able to multiply integers, which is an easier task. 



52. Multiplier

Complete design for the multiplier. 

When multiplying two floating point numbers together, it isn't necessary to align them first. Just 
multiply them, and take the most significant bits of the result. Meanwhile, add the exponents. Post-
multplication normalisation will only ever result in a shift of 1 bit, so I don't need a full barrel shifter, 
instead I just have a multiplexer with its inputs both connected to the multiplcation result but 
displaced by one bit. 

This unit can also multiply integers. In this case, the product is twice as wide as the operands. I 
decide that I must store this extra result word somewhere, it would be a shame to waste it. Register 
15 seems like the ideal place. Previously I had specified register 15 to be the Program Counter. 
However, the Program Counter does not need to be accessible for read or write by the executing 
program, it is entirely under the control of the instruction decode related units. So I hide it from the 
register bank and use register 15 for the least significant word of the result. The most significant word 
goes to the specified result register. 

The multiply circuit itself is not shown here, it's just drawn as a block with the MULT caption. I intend 
to use a fast parallel multiplier, I had some papers from the libary about how to build one of those, but 
unfortunately it requires a large number of chips. I decide not to draw it here, but just to consider it as 
a functional block: give it two numbers and it will return the product some time later. 

I also make the controverial decision to pipeline this unit, since it has a parallel multiplier. However, I 
don't pipeline it in the conventional way, with a register between each processing stage and clock the 
results along the pipeline. Instead I use ripple-through (wave) pipelining. Just shove the inputs in one 
after the other, wait the right amount of time, and take the output. Believe it or not, wave-pipelined 
parallel multipliers have been built in practice. Whether or not I could ever get it working is 
debateable. 



53. Instruction set once more



So the 27-th September 1992 was a heavy day. All that library research and then the design of the 
multiplier. The following day I decide to revisit the instruction set again. This time I summarise the 
whole thing on just one page. 



54.More on Floating Point Add/Subtract methods

The next day, the 29'th September 1992 I decide I really have to do something about the design of 
the floating point add/subtract circuit. I start to draw the circuit but find my understanding is still 
lacking, or rather, that my previous understanding has been temporarily erased by my exploits with 
the multiplier. So I start on some more simple worked examples to get things straight in my head. 



55. Floating Point Add/Subtract sketch

A first attempt at a design for the floating point add/subtract unit. 



56. Final Floating Point Add/Subtract design

Finally on the 1'st October 1992 I find myself in a position to complete the design of the add/subtract 
unit. This diagram includes as labelled blocks the Align, Normalise and Zero-Count blocks described 
previously. 



57. Add/Subtract block diagram and Questions

It's a complicated unit, this Add/Subtract, and I STILL have some questions about its operation, which 
I carefully write down here in order that I may return to them at some later time. 

Below that I draw the Add/Sub Floating Point unit as a block diagram showing its interconnections to 
the Align, Normalise and Zero Count blocks. 



58. Another listing of the Registers

Which now also shows register 15 as the multiplier low word. Notice that I have also replaced the 
separate I/O registers with a single one which is used for both IN and OUT data. There are therefore 
now 10 general purpose registers available. 

The idea of separating the input and output busses of the register file is a good one. It means that the 
instruction decode unit can access the output of the registers whenever it wants, without stopping the 
write-back of results to the register file by the units. Effectively then the bus arbitration circuit is 
always in the result phase, which should dramatically speed up the CPU. 



59. IOU Redesign

So, 2'nd October 1992 and this is the last page of my asynchronous TTL CPU design. I add a control 
and status register. I am unsure if there were any other changes since the last one (page 39). 


	1. Instruction set
	2. Instruction set (continued)
	3. Floating Point format and Execution Units
	4. Detailed Instruction Codes
	5. Detailed Instruction Codes: Add/Sub/Logic, Shift
	6. Detailed Instruction Codes: Bit manimpulation and jumps
	7. Block Diagram and Register descriptions
	8. Scoreboarding and Bus Arbitration
	9. Instruction set codes again
	10. Instruction set codes again (Control, Loa/Store, Multiply, Add/Sub/Logic)
	11. Instruction set codes again (shifts, bit manipulation, jumps)
	12. More on Scoreboarding
	13. Block Diagram of CPU
	14. DRAM refreshing
	15. DRAM refresh circuit
	16. Z80 Memory Controller
	17. DRAM page mode
	18. Instruction fetch and pipeline
	19. DRAM timing for Page-mode access
	20. Instruction buffer
	21. Propagation Delays of TTL families
	22. Instruction Pipeline and Load/Store Unit
	23. Instruction Pipeline (continued)
	24. Shift unit thoughts
	25. Instruction Fetch Pipeline evolution
	26. Instruction Queue Unit
	27. Memory Controller
	28. Address unit; Memory arbitration
	29. Evolution of the Memory Arbitration Circuit
	30. Final Circuit for Memory Arbitration
	31. Register File Definition
	32. Instruction Decoding and Scheduling
	33. Instruction Scheduler / First ALU thoughts
	34. Sketches for the BitMan and Load/Store Units
	35. Load/Store Unit
	36. Bit Management Unit; ALU
	37. Result Arbitration
	38. Register File and Scoreboard
	39. IOU, the Input/Output Unit
	40. Barrel Shifter sketch and FPU addition notes
	41. On the subject of Floating Point Addition
	42. Align Block
	43. Normalise Block
	44. On the counting of leading zeros
	45. Leading Zero Count
	46. Floating Point Addition Sketches
	47. Add/Subtract Floating Point: First design
	48. Library Research
	49. More Library Research
	50. A 4-bit Synchronous counter and Floating Point Multiplication
	51. First sketches for a floating point multiplier
	52. Multiplier
	53. Instruction set once more
	54.More on Floating Point Add/Subtract methods
	55. Floating Point Add/Subtract sketch
	56. Final Floating Point Add/Subtract design
	57. Add/Subtract block diagram and Questions
	58. Another listing of the Registers
	59. IOU Redesign

